Orthogonal Stability of Mixed Additive-Quadratic Jensen Type Functional Equation in Multi-Banach Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate mixed additive and quadratic functional in 2-Banach spaces

In the paper we establish the general solution of the function equation f(2x+y)+f(2x-y) = f(x+y)+f(x-y)+2f(2x)-2f(x) and investigate the Hyers-Ulam-Rassias stability of this equation in 2-Banach spaces.

متن کامل

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces

In this paper, we establish the general solution of the functional equation f(nx+ y) + f(nx− y) = nf(x+ y) + nf(x− y) + 2(f(nx)− nf(x))− 2(n − 1)f(y) for fixed integers n with n 6= 0,±1 and investigate the generalized Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces.

متن کامل

Stability of a Mixed Type Additive, Quadratic and Cubic Functional Equation in Random Normed Spaces

In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).

متن کامل

Stability of an n-Dimensional Mixed-Type Additive and Quadratic Functional Equation in Random Normed Spaces

In 1940, Ulam 1 gave a wide-ranging talk before a mathematical colloquium at the University of Wisconsin, in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphisms. Let G1 be a group, and let G2 be a metric group with a metric d ·, · . Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Pure Mathematics

سال: 2015

ISSN: 2160-0368,2160-0384

DOI: 10.4236/apm.2015.56031